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Abstract

Decision-making is an essential attribute of any intelligent agent or group. Nat-
ural systems are known to converge to optimal strategies through at least two
distinct mechanisms: collective decision-making via imitation of others, and indi-
vidual trial-and-error. This paper establishes an equivalence between these two
paradigms by drawing from the well-established collective decision-making model
of nest-hunting in swarms of honey bees. We show that the emergent distributed
cognition (sometimes referred to as the hive mind) arising from individual bees
following simple, local imitation-based rules is that of a single online reinforce-
ment learning (RL) agent interacting with many parallel environments. The
update rule through which this macro-agent learns is a bandit algorithm that we
coin Maynard-Cross Learning. Our analysis implies that a group of cognition-
limited organisms can be equivalent to a more complex, reinforcement-enabled
entity, substantiating the idea that group-level intelligence may explain how
seemingly simple and blind individual behaviors are selected in nature.
From a biological perspective, this analysis suggests how such imitation strate-
gies evolved: they constitute a scalable form of reinforcement learning at the
group level, aligning with theories of kin and group selection. Beyond biology,
the framework offers new tools for analyzing economic and social systems where
individuals imitate successful strategies, effectively participating in a collective
learning process. In swarm intelligence, our findings will inform the design of scal-
able collective systems in artificial domains, enabling RL-inspired mechanisms
for coordination and adaptability at scale.

Keywords: Swarm Intelligence, Reinforcement Learning, Evolutionary Game Theory,
Opinion Dynamics
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1 Introduction
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Fig. 1: The “hive mind” of a swarm of N bees nest-hunting among n options is a
single n-armed bandit RL agent learning from N environments in parallel.

Decision-making is the ability to choose the best action amongst all available
options in a given scenario. Defining what a “best action” means requires ranking all
possible outcomes [1]. Most often, the preference among outcomes is abstracted out as
a single scalar signal [2] conveyed to the agent/individual1 by the environment as feed-
back for making a decision, which casts optimal decision-making into a maximization
problem.

In nature, at least two distinct mechanisms allow single agents or groups of indi-
viduals to converge towards making optimal decisions. The first of these mechanisms
adopts an individualistic approach, whereby the agent learns to make optimal deci-
sions through trial and error. This paradigm is known as Reinforcement Learning
(RL), where the agent learns a policy that maximizes the rewards it receives upon
interacting with its environment [3]. Numerous studies in computational neuroscience
have established links between learning processes happening in the brains of living
beings and the formal framework of algorithmic RL [4, 5]. In this paper, we are specif-
ically interested in the multi-armed bandit framework [3], where a single RL agent
learns to make choices among different options (or “arms”) in an online fashion. Online
RL agents learn by either interacting with a single environment (a setting recently
referred to as the “streaming” setting [6, 7]), or, when possible, by collecting samples

1To avoid confusion, we use “agent” in the context of RL and “individual” in the context of a population.
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in parallel from multiple copies of the same environment simultaneously (the “parallel”
setting [8]). To stabilize RL, the learning rate and the number of parallel environments
are crucial in the streaming and parallel cases, respectively. Among the many learn-
ing algorithms designed to solve multi-armed bandits (Upper-Confidence-Bound [9],
ϵ-greedy [3], Gradient Bandit [10], etc.), we consider the Cross Learning (CL) [11]
update rule (named after the economist John G. Cross [12] and not to be mixed with
more recent overlapping nomenclature). CL is closely related to the Gradient Bandit
algorithm, an RL algorithm directly based on the policy gradient theorem [3]. The
policy gradient theorem is also the basis of many more advanced policy gradient (e.g.,
REINFORCE [13] and PPO [14]) and actor-critic (e.g., SAC [15]) RL algorithms.

The second mechanism takes a collective approach, where individuals mimic other
individuals in the group to make decisions. Typically, this process is cast as a con-
sensus problem, in which all individuals in a population have to agree on the best
decision from a set of alternatives. This problem is commonly referred to as best-of-
n collective decision-making (CDM). CDM arises in various domains, such as honey
bee colonies [16, 17], human societies [18], and robot swarms [19, 20]. Imitation of
success [21], from Evolutionary Game Theory (EGT), is a solution to CDM where indi-
viduals mimic randomly chosen neighbors based on how successful those neighbors’
decisions have been. Another solution to CDM is the weighted voter model [20, 22],
which comes from modeling the nest-hunting behavior of honey bees [23]. During nest-
hunting, honey bees are known to adopt the behavior represented in Fig. 1 (left-hand
half): after scouting one of n potential nesting areas, bees come back to the initial
location of the swarm and perform a “waggle dance” [23] that describes the coordi-
nates of the option they have explored. This dance is performed at a frequency that
is proportional to the estimated quality of the explored area. Other bees go scout the
area corresponding to the first dance they witness, and this process repeats until the
colony reaches a quorum [24]. At this point, the entire swarm takes off and leaves for
the winning site (note this is a simplified description of bees’ behavior, see [24–27] for
details). We refer to this distributed behavior as that of a “hive mind”, motivated by
two factors: (1) biologists have already witnessed parallels between the emergent dis-
tributed cognition arising from individual-to-individual interactions and cognition in
neuron-based complex brains of vertebrates [27], and (2): we formally show that the
bee colony collectively learns as if it were one single RL entity.

In this paper, we highlight how imitation mechanisms in groups and individual
trial-and-error mechanisms can be bridged via different variants of the Replicator
Dynamic [28] (RD). In particular, we show that the model used by biologists to
describe the nest-hunting behavior of honey bees amounts to a single-agent RL pro-
cess at the swarm level, as illustrated in Fig. 1. To the best of our knowledge, this is
the first work to formally establish this equivalence. Specifically, our contributions are:

• We first remark that a large population of non-learning individuals following the
imitation of success model can equivalently be seen as a single abstract RL agent
following the Cross Learning update rule.

• We then show that the weighted voter model used to model the behavior of individual
honey bees during nest-hunting also aggregates to a single-agent RL algorithm at
the macro-organism level, that we coin Maynard-Cross Learning.
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• We extend our theoretical analysis with further results from simulation.

The first two contributions, which detail how social imitation models aggregate into a
single reinforcement learning agent, provide a formal description of diverse instances
of collective intelligence.

2 Background

2.1 Multi-armed bandits and Cross Learning (J.G. Cross)

Multi-armed bandits (Fig. 1, right-hand half) are the simplest type of environment
encountered in RL literature. They consist of a discrete set of available actions, called
“arms”, among which the agent has to find the most rewarding. In the n-armed ban-
dits considered in this paper, pulling an arm a ∈ {1, . . . , n} returns a real-valued
reward ra ∈ [0, 1] sampled from a hidden distribution r(a). The objective for an RL
agent playing a multi-armed bandit is to learn a policy, denoted by the probability
vector π = (π1, . . . .πn), that maximizes the rewards obtained upon pulling the arms.
Different optimization strategies exist to find such policies, one of the oldest being
Cross Learning [11]:

Definition 1. Let k be an action and rk a corresponding reward sample (rk ∼ r(k)).
Let πa denote the ath component of π. Cross Learning (CL) updates the policy π as:

∀a, πa ← πa + rk ×

{
1− πa if a = k

−πa otherwise
(1)

For convenience, when sampling reward rk from action k, we denote the expected
policy update on action a’s probability πa as:

dπa(k) = Erk∼r(k)[rk]×

{
1− πa if a = k

−πa otherwise
(2)

In CL, every reward rk sampled by applying an action k directly affects the proba-
bilities of all actions. As noted earlier, CL is close to the Gradient Bandit algorithm,
which performs a similar update at the parameter level (called “preferences”) of a
parametric policy rather than directly updating the probability vector.

2.2 Evolutionary Game Theory

Evolutionary Game Theory (EGT) is the study of population games [21]. A population
P is made of a large number of individuals, where any individual i is associated with
a type, denoted by Ti ∈ {1, . . . , n}. The population vector π = (π1, . . . , πn) represents
the fraction of individuals in each type (

∑
i πi = 1). Individuals are repeatedly paired

at random to play a game, each receiving a separate payoff. Individuals adapt their
type based on their payoff according to a revision protocol.
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Remark 1. Population-policy equivalence. For the argument of our paper, it is inter-
esting to interchangeably define π = (π1, . . . , πn) both as a multi-armed bandit RL
policy and as a population vector [12]. This is possible because in both cases the vector
π is constrained to the probability simplex. Further, note that uniformly sampling an
individual of type a from the population P (represented by the population vector π)
is equivalent to sampling an action a from the policy π.

2.2.1 Imitation of success and the Taylor Replicator Dynamic

In evolutionary dynamics, an important revision protocol is imitation of success [21]:

Definition 2. In the “imitation of success” revision model Rsuccess, any individual
i ∈ P of type Ti = a executes the following process:

• i samples a random individual j ∼ U(P) to imitate. Let Tj be b.
• Both individuals i and j play a 2-player game in which they receive payoffs ra and
rb respectively (0 ≤ ra,b ≤ 1). Each payoff depends on the types of both individuals.

• i switches from type a to type b with probability rb.

One can easily see why this rule is called “imitation of success”: i imitates j based on
j’s payoff. Imitation of success is typically used to model replication of the fittest in
evolution for biology, or certain human behaviors in economics [29]. When aggregated
across the population, this revision model yields a famous evolutionary dynamic known
as the Taylor Replicator Dynamic [28, 30] (TRD) (see Lemma 1):

π̇a = πa(q
π
a − vπ), (3)

where π̇a is the derivative of the a-th component of the population vector, qπa := E[ra] is
the expected payoff of the type a against the current population, and vπ :=

∑
b πbE[rb]

is the current average payoff of the entire population.

2.2.2 Weighted Voter Model and the Maynard-Smith Replicator
Dynamic

The weighted voter model [22] instead typically models the nest-hunting behavior of
honey bees described in Section 1 [19, 23]:
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Definition 3. In the “weighted voter” revision model Rwvoter, any bee i ∈ P of type
Ti = a (where a corresponds to a nest-site option) executes the following process:

• i estimates the quality of its current type ra ∼ r(a), where 0 ≤ ra ≤ 1.
• After obtaining ra, i locally broadcasts its type at a frequency proportional to ra.
• i switches its type to the first type b that it perceives from its neighborhood. Assum-

ing all individuals are well mixed in the population [31], the corresponding expected
probability of i switching to type b is the proportion of votes cast for b within its
neighborhood:

P
(i)
neighborhood(b← a) =

N
(i)
b E[rb]∑

l N
(i)
l E[rl]

where N
(i)
k is the number of individuals of type k in the neighborhood of i.

Note that, in this model, honey bees do not need to directly observe the quality
estimate of other scout bees, but only their type. In Section 3.2, we show that the
weighted voter revision model aggregates to a variant of the TRD, called the Maynard-
Smith Replicator Dynamic [32] (MRD):

π̇a =
πa

vπ
(qπa − vπ) (4)

3 Methodology

In Section 3.1, we remark that previous results from the literature yield an interest-
ing insight binding Rsuccess and reinforcement learning together: a large population
following the “imitation of success” revision model can equivalently be considered as
a single RL agent. While this is a direct consequence of previously known results, we
could not find this insight formulated in the literature and thus we took the liberty
to formalize it as Proposition 1. Then, in Section 3.2, we prove that the weighted
voter revision model also aggregates to an RL algorithm. In other words, our analysis
indicates that, at least in the well-studied case of nest-hunting, a swarm of honeybees
collectively acts as a single RL entity. We formalize this result as Proposition 2.

3.1 Imitation of Success and Cross Learning

Evolutionary Game Theorists have long been interested in the “imitation of success”
revision protocol, as it models replication of the fittest in the evolutionary setting. In
this literature, it is famously known that a population of individuals following Rsuccess

aggregates to the Taylor Replicator Dynamic (see for instance [21, 28] and the proof
in the Appendix):

Lemma 1. An infinite population of individuals adopting Rsuccess follows the TRD:

dπa = πa(q
π
a − vπ), (5)
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where πa is the proportion of type a in the population, qπa is the expected payoff (also
called “fitness”) of type a against the population, and vπ is the average fitness of the
population.

Our choice of notation in Lemma 1 is reminiscent of the RL literature and may seem
unusual from an EGT perspective. In fact, this choice is motivated by another, lesser-
known result from [12, 33], who showed that the Cross Learning RL algorithm performs
updates that are also similar to the TRD (proof in Appendix):

Lemma 2. In expectation, an RL agent learning via the CL update rule follows:

E[dπa] = πa(q
π
a − vπ), (6)

where qπa is the action-value of a, and vπ is the value of policy π.

With this notation, it is straightforward to combine Lemmas 1 and 2, provided a
sensible duality exists between the identical terms. Remember how Remark 1 describes
a duality between the population vector of Lemma 1 and the policy of Lemma 2, π.
In Lemma 1, the fitness qπa is the payoff that an individual of type a can expect on
average when encountering a random individual from the population π. In Lemma 2,
the dual of this individual of type a is an action a sampled from the policy π, whose
expected reward is the action-value qπa . Similarly, the dual of the population fitness
vπ is the policy-value. In other words, under Rsuccess, individuals sampled from the
population π can equivalently be regarded as action samples from an RL macro-agent,
whose rewards are the individuals’ payoffs. The agent maximizes the average payoff of
the group via Exact Cross Learning (we call “exact” the RL algorithm that directly
applies expected updates instead of updates computed from sample estimates):

Proposition 1. An infinite population of individuals following Rsuccess can equiva-
lently be seen as an RL agent following Exact Cross Learning, i.e.,

dsuccessπa = E[dCLπa] , (7)

where π is both a population vector and a vector of action-probabilities, dsuccessπ is
the single-step change in the population vector π under the “imitation of success”
revision model , and dCLπ is an update performed by CL on the policy π.

Proof Direct consequence of Lemmas 1 and 2. □

Intuitively, this macroscopic RL process can appear as a mere by-product of individuals
in the population imitating others to optimize for their own success. But let us now
turn our attention to organisms that may not even have a notion of individual success
to optimize: honey bees.
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3.2 Weighted Voters and Maynard-Cross Learning

We now consider a large population of N ≫ 1 honey bees with average local
neighborhood size M ≫ 1, seeking agreement on which nesting site to select by
applying Rwvoter. We show that, although Rwvoter is a blind imitation protocol where
individual bees simply imitate the first type they encounter, a swarm of bees following
Rwvoter aggregates to an RL agent at the macro-organism level. In the Rwvoter model,
individual bees are blind imitators, but active promoters. Each bee i of type Ti = k

and payoff sample r
(i)
k ∼ r(k) has a tangible stochastic influence on the local expected

inflow of other bees that it rallies to its own type k within its local neighborhood Ni:

P
(i)
neighborhood(k ← ·) =

r
(i)
k∑

j∈Ni

r(j)
, (8)

where r
(i)
k represents i’s broadcasting frequency, and

∑
j∈Ni

r(j) represents the total
broadcasting frequency of i’s local neighborhood. The expected outflow attributable
to i on the entire swarm from any type a ̸= k to the type k is thus:

P (i)(k ← a) =
N

(i)
a

N

r
(i)
k∑

j∈Ni

r(j)
, (9)

where N
(i)
a is the number of type-a bees within i’s neighborhood. For simplicity, we

assume that M (and thus also N (i)) is large. Assuming that all individuals are well

mixed in the population [31], it follows that
N(i)

a

M = πa:

P (i)(k ← a) =
Mπa

N

r
(i)
k∑

j∈Ni

r(j)

=
πa

N

rk
1
M

∑
j∈Ni

r(j)

= α
rk
vπ

πa, (10)

where vπ is the average population payoff and α := 1
N . Summing over all types except

k (whose outflow to k is 0), we obtain the total inflow into type k attributable to i:∑
a̸=k

P (i)(k ← a) =
∑
a̸=k

α
rk
vπ

πa

= α
rk
vπ

(1− πk) . (11)
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Given a bee i of type k, Eq. (10) describes the outflow that its waggle dance induces
within the swarm from any type a to the type k, while Eq. (11) describes the corre-
sponding inflow into type k from all types. In other words, the bee i can be seen as
an action-reward sample whose influence on the population vector π is described by
an RL update rule that we coin α-Maynard-Cross Learning (α-MCL):

Definition 4. Let k be an action and rk ∼ r(k) a corresponding reward sample. MCL
updates the policy π as:

∀a, πa ← πa + α
rk
vπ

{
1− πa if a = k

−πa otherwise
(12)

where vπ is the current value of policy π.

Here, the meaning of α is of peculiar interest. In Eq. (12), α looks very much like
a learning rate, i.e., a hyperparameter that RL practitioners typically set to a small
value in order to downsize the amplitude of individual policy updates. When dealing
with on-policy RL algorithms, computer scientists often evaluate a policy in several
parallel copies of the same environment [34], average the corresponding updates into a
single policy update, and downsize this update via a small learning rate. The common
rule of thumb is that the learning rate can be larger when there are enough parallel
environments. But in Definition 4, α instead has a clear population-based meaning: it
is the inverse of the number of bees acting in parallel in the swarm, as we are describing
the influence of one single bee on the population. Crucially, this influence is that of
an RL agent, but the individual bee itself is in no way an RL agent: it only blindly
imitates its peers! Instead, everything happens as if nature had evolved individual
bees’ behavior such that it aggregates to an RL agent at the macro-organism level: the
“hive mind”, whose rewards are the quality estimates of nest site samples. Summing
the influence of all individual bees yields:

dπa =

N∑
i=0

r(i)

Nvπ

{
1− πa if a = k

−πa otherwise

=
∑
k

Nkq
π
k

Nvπ

{
1− πa if a = k

−πa otherwise

=
1

Nvπ
(Naq

π
a (1− πa)−

∑
k ̸=a

Nkq
π
kπa)

=
1

Nvπ
(Naq

π
a −

∑
k

Nkq
π
kπa)

=
1

vπ
(πaq

π
a − πa

∑
k

πkq
π
k )

=
πa

vπ
(qπa − vπ) (13)
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which is the Maynard-Smith Replicator Dynamic. Similar to Proposition 1, we can fur-
ther show that this update is the expected update performed by the 1-MCL algorithm,
that we simply call Maynard-Cross Learning (MCL) for conciseness:

E[dMCLπa] =

n∑
k=1

πk.d
MCLπa(k)

= πa.d
MCLπa(a) +

∑
k ̸=a

πk.d
MCLπa(k)

= πa
E[ra]
vπ

(1− πa) +
∑
k ̸=a

πk
E[rk]
vπ

(−πa)

=
πa

vπ

[
E[ra]− πaE[ra]−

∑
k ̸=a

πkE[rk]
]

=
πa

vπ

[
E[ra]−

∑
k

πkE[rk]
]

=
πa

vπ
(qπa − vπ) (14)

Thus we can write the RL update of the “hive mind” in a swarm of bees following the
Rwvoter model:

Proposition 2. An infinite population of individuals following Rwvoter can equiva-
lently be seen as an RL agent following Exact Maynard-Cross Learning, i.e.,

dwvoterπa = E[dMCLπa], (15)

where π is both a population vector and a vector of action-probabilities, dwvoterπ is
the single-step change in the population vector π under the weighted voter revision
model, and dMCLπ is the update performed by MCL on the policy π.

Proof Direct consequence of Eqs. (13) and (14). □

4 Final remarks and simulations

4.1 A single RL agent in many parallel environments

Researchers have already informally witnessed collective intelligence [35, 36] described
in Section 3, often referred to as “emergent” [37] to describe situations where simple,
seemingly blind individual behaviors aggregate to a complex and coherent behavior of
the group. Proposition 2 shows that, when the individual bees’ behavior is modeled
as Rwvoter, this “emergent” collective intelligence is MCL, a multi-armed bandit Rein-
forcement Learning algorithm. But the implications of Proposition 2 go even further:
not only a swarm of bees is a single MCL agent, it is one that is quite efficient at
what it does, because each bee is a parallel action sample of its policy. In other words,

10



0 20000 40000 60000 80000 100000 120000 140000
Steps

20

40

60

80

100

Av
er

ag
e

%
op

tim
al

ac
tio

n

0.001-MCL
0.05-MCL

0.01-MCL
Rwvoter

(a) α-MCL for varying learning rates

0 50 100 150 200 250
Steps

20

40

60

80

100

Av
er

ag
e

%
op

tim
al

ty
pe

N=10
N=20

N=50
N=100

N=500
MRD

(b) Varying swarm sizes N

0 50 100 150 200 250
Steps

20

40

60

80

100

Av
er

ag
e

%
op

tim
al

ac
tio

n

M=1
M=2
M=5

M=10
M=500
MRD

(c) Varying neighborhood sizes for N=500

0 5 10 15 20 25 30
Steps

20

40

60

80

100

Av
er

ag
e

%
op

tim
al

ac
tio

n

Deterministic Rsuccess
Determinstic Imitation
of Success with Rwvoter
Stochastic Imitation
of Success with Rwvoter

MRD
TRD

(d) Variants of Rsuccess & Rwvoter in N=1000

Fig. 2: Simulations: (a) Swarms of bees reach consensus more rapidly when following
Rwvoter collectively than when individual bees learn via α-MCL. (b,c) Varying swarm
and neighborhood sizes show that the theoretical predictions hold under practical
constraints. (d) Simple variants of Rsuccess and Rwvoter can surpass Rwvoter in this
environment, raising the question of why evolution favored Rwvoter over alternative
decision-making strategies.

each bee i can be seen as an action sample a(i) ∼ π tested against a parallel copy
E(i) of the environment E, as illustrated in Fig. 1. Fig. 2a shows that this converges
much faster than if individual bees were themselves to learn via α-MCL instead of
just following Rwvoter. If the MCL algorithm were of any use outside of biology2, say
if a computer scientist wanted to train a robot via iterative α-MCL, they would need
a small α for the algorithm to converge to the optimal option. Or, if feasible, they
could afford using a larger α by evaluating the policy in several parallel simulations
(see Sections D.5 and D.6). Swarms of honey bees naturally learn via parallel RL in
as many environments as there are scouts in the swarm. Finally, Proposition 1 implies
that a similar discussion holds for the “imitation of success” revision protocol, which
encompasses certain human behaviors, and even natural selection itself.

4.2 Swarm size

In Section 4.1, we have discussed how being made of a number of individuals enables
the “hive mind” to evaluate actions sampled from π in a parallel fashion. Furthermore,

2Most likely not: more advanced algorithms exist to solve multi-armed bandits (such as UCB [9]).
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our analysis assumed that this number was large (which enabled us to compute flows
in Section 3). Yet, in practice there is a tradeoff here. Actual honey bee swarms are
known to use only a small proportion of their bees as scouts, while the large majority
of the swarm remains quiescent during nest-hunting [38, 39], which is surmised to be in
the interest of energy-efficiency. In a typical swarm of 10,000 bees, roughly 200 to 500
scouts are active during nest-site selection. To analyze how the number of scouts N
affects the task-performance of the MCL macro-agent, we conducted simplified sim-
ulations where swarms of varying sizes had to choose the best amongst 10 options.
Option qualities were spread between 0 and 1, while the noise in bees’ estimates was
modeled with a uniform perturbation of amplitude 0.2. Fig. 2b reports the percentage
of populations that converged to the optimal choice for different values of N , across
1000 seeds (each individual seed converged to a homogeneous choice). In these sim-
ulations, N = 500 is enough to closely follow the MRD and converge to the optimal
option, whereas a number of scout bees that is too small often yields convergence to a
sub-optimal nest site option. However, our choice of simulation parameters is largely
arbitrary: Fig. 2b should be interpreted qualitatively rather than quantitatively.

4.3 Neighborhood size

In Section 3, we have assumed that the local neighborhood size M was large. This
assumption was useful to analytically derive the macro-agent RL update, because it
meant that local neighborhoods (i.e., other scout bees that a scout may randomly walk
into within its vicinity) could be considered well-mixed. Arguably, actual neighborhood
sizes are not that large in the real world. Therefore, to complete our theoretical analy-
sis, we performed Rwvoter simulations with varying neighborhood sizes. Fig. 2c shows
that even a small M ≥ 5 yields a macro-agent algorithm that closely follows MCL.
With M = 1, each scout copies an arbitrary neighbor, which yields no macro-dynamic.

4.4 The collective power of promoting

The Rwvoter revision protocol adopted by honey bees has surprising advantages over
imitation of success. In Section D, we show that Rwvoter (MCL) generally converges
faster than Rsuccess (CL), except for small population sizes. This is in addition to the
simplicity of Rwvoter, which only requires bees to blindly mimic their peers.

4.5 Could bees do more?

In Section 3, we showed that the bees employing Rwvoter can be seen as a single online
RL agent. However, a natural question arises: is Rwvoter the optimal collective-decision
making strategy? To answer this question, we investigate three simple variants of the
imitation of success model and the weighted voter model (more details in Section D.3):

• Deterministic Imitation of Success: Unlike the standard imitation of success model
(which switches stochastically based on partner’s success), this variant determinis-
tically adopts the partner’s type when it has more success.
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• Deterministic Imitation of Success with Weighted Voter Rule: This variant com-
bines the weighted voter model’s success-weighted neighbor sampling with the
deterministic imitation of success switch based on comparative success.

• Stochastic Imitation of Success with Weighted Voter Rule: This variant differs from
Deterministic Imitation of Success with Weighted Voter Rule in that it uses classic
stochastic imitation of success instead of our deterministic version as the switching
rule.

Fig. 2d shows that, at least in this simplified environment, all these variants con-
verge to the optimal decision faster than Rwvoter or MRD. This simple experiment
suggests that there may be better collective decision-making strategies than Rwvoter.
In particular, we see that if the bees could perform comparisons with their individual
quality estimates before blindly imitating others from the neighborhood, the conver-
gence speed could be faster than MRD. This insight raises an important question: why
did bees evolve to use Rwvoter [19, 23] over other collective decision-making strategies?

We speculate that this behaviour relates to cognitive constraints and the funda-
mental challenge of quality comparison. The weighted voter model requires remarkably
minimal individual capabilities: bees need only estimate the quality of their own
option and observe the types (not quality estimates) of neighbors, broadcasting their
preference at a frequency proportional to quality. Rwvoter requires no comparison
operations between quality values and no direct communication of numerical quality
estimates, capabilities that all faster-converging variants demand. In contrast, deter-
ministic switching rules require bees to not only observe others’ quality estimates
and compare them to their own, but also presume an objective or at least mutu-
ally calibrated scale for evaluating nest site quality. This is non-trivial: individual
bees may experience different environmental conditions during their assessments, have
different sensory acuity, or weight various quality features differently. Rwvoter may
elegantly sidestep this calibration problem by converting subjective quality estimates
into broadcast frequencies — a transformation that preserves relative preferences while
eliminating the need for interpersonal comparison. The weighted voter model may
thus represent an evolutionary solution that achieves collective reinforcement learning
with the absolute minimum individual cognitive machinery while avoiding the diffi-
cult problem of quality scale calibration, trading some convergence speed for dramatic
simplification of individual processing and robustness to individual variation.

This hypothesis aligns with the broader pattern in social insects where complex
collective behaviors emerge from remarkably simple individual rules, suggesting that
evolutionary pressures favor cognitive parsimony at the individual level when collective
intelligence can compensate at the group level, a strategy that may be driven in part
by the substantial metabolic costs of neural tissue, which in mammals requires nearly
an order of magnitude more energy per unit weight than other somatic tissues [40, 41].
We leave this exploration open for future work.

4.6 Broader significance

• Biology. Proposition 2 shows that seemingly blind, imitation-based bee interac-
tions aggregate to a form of collective intelligence, which is that of a “hive mind”
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learning through reinforcement. This is interesting from a neuroscience perspective,
since both imitation and reinforcement have long been known to govern learning at
the individual level [4, 42]. What our paper shows about honey bees is that their
puzzling imitative behavior can in fact be understood as reinforcement from the
swarm-agent perspective, where this behavior equates to massively parallel MCL.
Why this imitative behavior has evolved in nature may thus appear clearer: swarms
of honey bees are an example of reinforcement strategy having evolved at the group
level. This analysis agrees with the commonly accepted theory of group/kin selection
to explain the behavior of honey bees [43]. Building on the framework established in
Proposition 1, parallel findings in other phylogenetically distant biological species
underscore the generality of the proposed population–policy equivalences of this
work. Notably, pheromone-guided C. elegans foraging exhibits the same mathemat-
ical structure as cross-learning [44], suggesting that stigmergic coordination may
also be modeled as a form of collective reinforcement learning.

• Economy and Social Dynamics. Evolutionary Game Theory goes beyond mod-
eling biology: it extends to many types of population dynamics, most notably in
economics [29, 33]. When thinking of Rsuccess as a model of certain decision-making
strategies, Proposition 1 yields that imitating others’ success makes us part of a
macroscopic RL process that hugely benefits the whole group, by mutualizing our
speed of convergence to optimal strategies (see Section 4.1). This opens an avenue
for modeling the group-level impacts of economic actors’ imitative behaviors as
forms of collective reinforcement learning.

• Algorithmic Swarm Intelligence. The field of Swarm Intelligence takes inspira-
tion from complex emergent behaviors arising from a collective of natural entities
following simple, local, and decentralized rules [35], to engineer algorithms that
leverage collective principles like coordination, cooperation, and communication
to tackle various problems (including CDM) across multiple domains such as
swarm robotics [45, 46] and optimization [47]. Propositions 1 and 2 provide the-
oretical grounding for the phenomenon commonly referred to as “emergence” in
this field [37]. This bridge also opens up the possibility of porting ideas from
Reinforcement Learning to derive Swarm Intelligence local rules.

• Algorithmic Reinforcement Learning. Similar to how we abstracted a popula-
tion of Rwvoter individuals as a single MCL agent, other revision models (majority
rule [19] and cross-inhibition [48]) can be used to abstract dynamic groups of enti-
ties as simple, single RL agents. In massively multi-agent real-world settings (e.g.,
finance), this may greatly help model the non-stationarity of environment dynamics.

4.7 Conclusion

We have demonstrated that imitation-based collective behavior in large populations
can be mathematically equivalent to reinforcement learning, providing a unifying
framework that reinterprets swarm intelligence, social dynamics, and evolutionary pro-
cesses as emergent forms of collective learning. This result provides a formal basis for
understanding how simple, local imitation behaviors, often regarded as non-cognitive,
can give rise to group-level intelligence and adaptive learning at scale. In particu-
lar, Proposition 2 demonstrates that the “hive mind” observed in swarms of bees can
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indeed be viewed as a single coherent agent learning via reinforcement, giving rise to
a new bandit algorithm that we coin Maynard-Cross Learning.
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A Proofs for Section 3 (Methodology)

Lemma 1. An infinite population of individuals adopting Rsuccess follows the TRD:

dπa = πa(q
π
a − vπ), (5)

where πa is the proportion of type a in the population, qπa is the expected payoff (also
called “fitness”) of type a against the population, and vπ is the average fitness of the
population.

Proof. Let P (a ← b) denote the inflow of individuals of type b into type a, i.e, the
proportion of the population leaving type b and adopting type a. The population has
a proportion of πb individuals of type b, each having a probability πa of meeting an
individual of type a, and a conditional probability E[ra] of switching to its type. Thus,
we get P (a← b) = πbπaE[ra]:

dπa =
∑
b̸=a

P (a← b)︸ ︷︷ ︸
inflow

−P (b← a)︸ ︷︷ ︸
outflow

(16)

=
∑
b̸=a

πbπaE[ra]− πaπbE[rb]

= πa

[∑
b̸=a

πbE[ra]−
∑
b̸=a

πbE[rb]
] ∑

b̸=a

πb + πa = 1

= πa

[
(1− πa)E[ra]−

∑
b̸=a

πbE[rb]
]

= πa

[
E[ra]−

∑
b

πbE[rb]
]

= πa(q
π
a − vπ) (17)

□

Lemma 2. In expectation, an RL agent learning via the CL update rule follows:

E[dπa] = πa(q
π
a − vπ), (6)

where qπa is the action-value of a, and vπ is the value of policy π.

Proof. Let us compute the expectation over actions sampled from π in Eq. 2. For
convenience, we write
E[dπa] := Ek∼π[dπa(k)], and E[rk] := Erk∼r(k)[rk]:

E[dπa] =

n∑
k=1

πk.dπa(k) (18)
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= πa.dπa(a) +
∑
k ̸=a

πk.dπa(k)

= πaE[ra](1− πa) +
∑
k ̸=a

πkE[rk](−πa)

= πa

[
E[ra]− πaE[ra]−

∑
k ̸=a

πkE[rk]
]

= πa

[
E[ra]−

∑
k

πkE[rk]
]

= πa(q
π
a − vπ) (19)

□

B Collective Decision-Making in Swarm Robotics

This section briefly explores the connections between Collective Decision-Making and
Swarm Intelligence. This will help realize the extent of the impact that the established
bridge can have on the field of swarm robotics. Drawing inspiration from the nest-site
selection behavior of honey bees, swarm intelligence researchers have created collective
decision-making strategies for robot swarms. Such collective decision-making systems
have applications such as monitoring of forest fires, patrolling oceans, etc. A represen-
tative setup [49] consists of two spatially separated zones and a central nest zone. The
quality of each sampling zone is represented by certain features within the sampling
zone (such as the color of the zone, etc.). Robot swarms are then tasked with identify-
ing the highest quality zone by combining exploration, sampling, and communication
behaviors. Simple robots are typically used that execute simple behaviors, such as
phototaxis (motion towards or away from a source of light), to commute between the
zones. Sampling behaviors are executed in the zones using simple sensors, which give
noisy quality estimates of the zone. These estimates enable the robot to form opinions
of the sampled zone. After sampling, robots return to the nest and perform ran-
dom movements, facilitating population mixing and opinion diffusion. To simulate the
“waggle dance”, robots modulate the amount of time they spend in the nest, whereby
they spend time proportional to the quality of the zone (referred to as positive modu-
lation). Robots can then use different protocols, such as the weighted voter model, to
update their individual opinions. Upon repeated such interactions, the robot swarm
converges to the optimal decision. This setting also forms an excellent testbed for
examining the influence of finite size effects, congestion, and connectivity constraints
of the swarm. Apart from the weighted voter model described in this work, there exist
other decision-making strategies, such as the majority rule model [19], where individ-
uals collect opinions of their immediate local neighbors and switch to the majority
opinion. Cross-inhibition [48] is another model that involves various mechanisms such
as recruitment (similar to positive modulation) and inhibition (stop signaling to inhibit
individuals from switching their opinions) to make decisions. Beyond these founda-
tional work, investigations related to dynamic qualities for options [50], multi-feature
qualities for options [51], continuous space options [52], Bayesian approaches to model
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beliefs of individuals for options [53], and quality magnitude sensitivity based stud-
ies [54] have been carried out in the literature. In addition, investigations have also
been carried out that model simple neural dynamics for sensorimotor coordination of
agents [55] for collective decision-making.

C Notations

Since this paper uses nomenclature from different fields to denote similar things, we
summarize them in one place for quick reference. This is similar to the table used by
Bloembergen et al [12].

Reinforcement learning Collective-Decision Making/Evolutionary Game Theory
action opinion/option/type
policy population vector
reward quality/payoff

RL agent hive-mind

Table 1: Overlapping nomenclature between the fields of RL, CDM, and
EGT.

D Simulations

In this section, we provide some additional results to consolidate the theory presented
in the manuscript. To do so, we first describe the two RL update rules: CL and MCL,
in both their streaming and parallel variants. We also outline the implementation
details of the population update rules Rsuccess and Rwvoter along with their variants.
Finally, we numerically simulate the TRD and MRD to compare the RL and popu-
lation update rules against their corresponding analytical solutions. It is important
to note that MCL is not intended as a competitive bandit algorithm, but only as
a biologically motivated construct designed to demonstrate that an imitation-based
population update (Rwvoter) can be captured by an RL update rule.

D.1 Environment

We consider the standard multi-armed stateless bandit setting described in prelim-
inaries (see Section 2.1). It is clear from the Population-policy equivalence remark
(Remark 1) that we can use the same environment for RL and population experiments.
The environment returns a noisy reward signal sampled from the hidden distribu-
tion r(a) when action a is taken. We define the hidden reward distribution as a uniform
distribution, given by r ∼ U(qπa − ∆, qπa + ∆), where qπa is the mean reward associ-
ated with action a, and ∆ controls the amplitude of noise around qπa . To ensure the
validity of both RL and population updates, rewards are bounded within the interval
[0,1], which imposes the constraint qπa − ∆ ≥ 0 and qπa + ∆ ≤ 1. We consider three
distinct scenarios for the reward means across actions: (i) Low, where all qπa values are
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equally spaced in the range [0.1, 0.4], (ii) Middle, where qπa values are equally spaced
in the range [0.4,0.7], and (iii) High, where all qπa values are equally spaced in the
range [0.6,0.9].

D.2 RL Experiments

Streaming: In these experiments, an RL agent interacts with a single environment in
a streaming fashion. The RL agent starts with an initial random policy π. The agent
then samples one action k at each computation step from π in an iterative fashion.
For pulling this action k, the agent receives a noisy reward signal rk ∼ r(k) from the
environment. Subsequently, for CL, the agent utilizes Eq. (1) with learning rate α to
update the policy.

∀a, πa ← πa + αrk

{
1− πa if a = k

−πa otherwise
(20)

Whereas for MCL, Eq. (12) cannot be used directly, since vπ is not estimated. There-
fore, vπ is approximated by employing a moving average over rewards, where γ is a
weighting factor for recent rewards:

r̄ ← γr + (1− γ)r̄ . (21)

Moreover, since this update rule can make π invalid, i.e., components could become
negative or above one, we clamp π between 0 and 1:

∀a, πa ← clamp

(
πa + α

rk
r̄

{
1− πa if a = k

−πa otherwise

)
(22)

Where α is the learning rate. These computations are carried out for every training
step, and there are S steps per iteration.
Parallel: In these experiments, we implement parallel variants of the CL and MCL
update rules, referred to as P-CL and P-MCL hereafter, respectively. P-CL performs
a straightforward parallelization of the CL rule: at each update step, the policy π is
updated based on the average effect of B independent samples collected from B parallel
environments, as if simulating the CL update B times in parallel and averaging the
results. Similarly, in P-MCL, the policy update is computed using the average effect
of B parallel samples, normalized by vπ. Unlike streaming MCL, where normalization
(vπ) is based on a moving average of past rewards, P-MCL uses the current mean
of the B parallel rewards as the normalizing factor. With P-MCL, we also need to
explicitly limit these policy updates between 0 and 1 to ensure that π remains valid.
These calculations are also performed for S training steps per iteration.

D.3 Population Experiments

Rsuccess: We implement Rsuccess from Section 2.2.1. We start with an equal proportion
of individuals associated with any type. Further, each individual receives a stochastic
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payoff estimate (r ∼ r(a)) for their type. Then, at each step, everyone is paired with
another random individual for imitation. All individuals then generate a random real
number between 0 and 1, and if the random real number is greater than the payoff of
their paired individual, imitation is successful and they switch to their paired partner’s
type (rule 3 of Rsuccess). If the generated random number is not greater than the payoff
of their paired individual, they do not imitate and stick to their own types. Further,
we consider another variant Deterministic Imitation of Success where individuals
deterministically switch to the imitating partner’s type if the rewards of the partner
are higher than their rewards. There are S decision-making steps per iteration.
Rwvoter: We implement Rwvoter from Section 2.2.2. We start with an equal proportion
of individuals associated with any opinion. Further, each individual receives a stochas-
tic quality estimate (r ∼ r(a)) for their opinion. Then at each step, each individual
(i) switches to a opiton sampled from the distribution of votes cast v(i) (simulated

effect of “waggle dance”), where v
(i)
k is the ratio of votes cast for option k by the total

number of votes cast in it’s neighborhood (N i) excluding itself:

v
(i)
k =

∑
∀p∈N i: Tk=i

rp∑
∀q∈N i

rq
. (23)

These neighborhoods for each individual are formed by randomly sampling M individ-
uals from P at every time step. It is to be noted that, unless specified, the neighborhood
sizes are equal to the population size. Further, we consider two variants Determinis-
tic Imitation of Success with Weighted Voter rules and Stochastic Imitation
of Success with Weighted Voter rules, where we combine ideas from Rwvoter

and Rsuccess. With both of these variants, each individual is first paired with one of
their neighbors with a probability proportional to the neighbor’s rewards. After this
pairing, with Stochastic Imitation of Success with Weighted Voter Rules, individuals
switch similar to Rsuccess and with Deterministic Imitation of Success with Weighted
Voter rules, individuals switch similar to Deterministic Imitation of Success. There
are S decision-making steps per iteration. The code for reproducing the simulations
can be found here https://github.com/MISTLab/HiveMindRL.git

D.4 TRD and MRD

To empirically validate Propositions 1 and 2, we numerically simulate both the vari-
ants of RD according to Eqs. (3) and (4). As these equations are continuous, we
discretize them by a step δ (discretizing step). Further, we start from an initial ran-
dom population/policy (π) and simulate its evolution according to TRD and MRD
between time intervals [0, tf ], using the privileged information qπa not available to RL
and population experiments.

πa ← πa + δπa[q
π
a −

∑
l

πlq
π
l ] (24)
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πa ← πa + δ
πa

vπ
[qπa −

∑
l

πlq
π
l ] (25)

Hyperparameter value
Arms (n) 10
iterations 1000

Range of noise (2∆) 0.2
Parallel Environments (B) {10, 1000}

Discretizing factor (δ) 1

(a) Parallel RL experiments

Hyperparameter value
Types/options (n) 10

Seeds 1000
Range of noise (2∆) 0.2
Population size (N) {10, 1000}

Discretizing factor (δ) 1

(b) Population experiments

Hyperparameter value
Arms (n) 10

Learning rate (α) {0.001, 0.1}
iterations 1000

Range of noise (2∆) 0.2
Weight factor (γ) 0.01

Discretizing factor (δ) α

(c) Streaming RL experiments

Hyperparameter value
Arms (n) 10

Population size 1000
iterations 1000

Range of noise (2∆) 0.2
Neighborhood sizes {2, 10, 1000}

Discretizing factor (δ) α

(d) Neighborhood experiments

Table 2: Hyperparameters for RL and population experiments.

In all the subsequent experiments, we track the evolution of optimal decisions
in both reinforcement learning and population experiments. In the RL setting, we
monitor the “% optimal action”, defined as πa × 100 (where a is the optimal action),
and report the average along with its standard deviation over all seeds at each step.
Similarly, in the population setting, we compute the “% optimal type”, defined analo-
gously as πa×100, where a is the optimal type. We also include the trajectories of the
optimal action/type under the TRD and MRD dynamics to compare the empirical
behavior of the RL and population update rules with their corresponding analytical
models. The hyperparameters used in these simulations are provided in Table 2.

D.5 Streaming RL update rules follow analytical solutions
when the learning rate is small

These results are presented in Fig. 3. For all scenarios, CL and MCL follow TRD
and MRD, respectively, with small α, which can be explicitly seen with the dotted
line of the analytical solutions (TRD, MRD) exactly at the center of the optimal %
action curves of the CL and MCL update rules. This empirically validates that, with
a small α, Eq. (1) with α and Eq. (12) follow the TRD and MRD, respectively, even
in a streaming fashion. However, as soon as α increases, CL and MCL start deviating
from their respective analytical solutions and have a huge standard deviation. This
is a well-known effect in optimization literature. Interestingly, imagining the action
samples forming a population (see Section 4.1), we see that a larger α corresponds to
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Fig. 3: Results for streaming RL experiments.

a smaller population, which leads to a poor approximation of the expected update.

D.6 Parallel RL update rules follow analytical solutions when
the number of parallel environments is large.
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Fig. 4: Results for parallel RL experiments.

As seen in Fig. 4, it is clear that P-CL and P-MCL follow TRD and MRD,
respectively, when updates are made utilizing a large number of parallel environments
(this can be seen from the way the analytical solution is exactly at the center of the
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% optimal action curves of P-CL and P-MCL). However, as soon as the number of
parallel environments is reduced, the updates deviate from their analytical solutions
(see Section 4.1).

D.7 Population update rules: Rsuccess & Rwvoter follow their
analytical solutions when the population sizes are large

20
40
60
80

100
qπa ’s: Low

0 30 60 90 120 150

20
40
60
80

100

qπa ’s: Middle

0 30 60 90 120 150

qπa ’s: High

0 30 60 90 120 150

%
O

pt
im

al
ac

tio
n

N
:

1000
N

:
10

Steps
TRD MRD Rwvoter Rsuccess

Fig. 5: Results for population experiments.

It can be seen in Fig. 5 that both Rsuccess and Rwvoter follow TRD and MRD
respectively when the population size is large. As soon as the population shrinks,
Rsuccess and Rwvoter begin to deviate from the analytical solution.

D.8 Rsuccess & Rwvoter variants

It can be seen in Fig. 6 that the variants Deterministic Imitation of Success and
Deterministic Imitation of Success with Weighted Voter rules perform better than
MRD for all scenarios. However, Stochastic Imitation of Success with Weighted Voter
Rules performs better than MRD in the Middle and High scenario, and performs worse
than MRD in the low scenario. This could be because the probability of imitation
might be low for the Low scenario as the scales of rewards are smaller.

D.9 Neighbourhoood sizes in Rwvoter only affect the
convergence speed to MRD

It can be seen in Fig. 7 that for a large enough population Rwvoter follows MRD for
any neighborhood size. However, it can be seen that the convergence speed is affected
by smaller neighborhood sizes.
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D.10 Convergence rate of MRD is ≥ TRD

As noted in [21], TRD and MRD can be rearranged in the form:

π̇a = vπ(
πaq

π
a

vπ
− πa) (TRD) (26)

π̇a = 1(
πaq

π
a

vπ
− πa) (MRD) (27)

π̇ being the update “speed” and vπ being bounded between 0 and 1. The MRD speed
is thus greater than the TRD speed for a given scenario. Empirically, we observe that
MRD converges faster than TRD, especially when the qπa ’s are low and middle, as
seen with any of the Figs. 3 to 5. Whereas, when the qπa ’s are high, there is very little
difference (as vπ ≈ 1). By extension, this also implies that MCL (for small α), P-MCL
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(for large B), and Rwvoter (for large population) have convergence rates ≥ CL, P-CL,
and Rsuccess, respectively. However, to compare the convergence speeds of TRD and
MRD across various reward scales, we revert the equations to their original form.

π̇a = πa(q
π
a − vπ) (TRD) (28)

π̇a = πa

(qπa − vπ

vπ

)
(MRD) (29)

As the term qπa − vπ denotes the relative fitness of any a (or advantage in the RL
literature), we can see that TRD has a constant convergence speed across the reward
scales. However, with MRD, this relative fitness is normalized by vπ, which increases
with higher reward scales, leading to slower convergence speed with higher reward
scales. This, combined with the observation that the speed of MRD ≥ TRD for any
given scenario, shows that MRD catches up with TRD as the reward scales increase,
as seen in Figs. 3 to 5.
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